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ABSTRACT: 

 

This contribution concentrates on the determination of thematic uncertainty after the classification process. It is shown that in this 

context – in particular when evaluating remotely sensed scenes showing high spatial resolution – severe problems arise due to 

indeterminate boundaries in both, reference data and classification results. This effect occurs between mostly natural objects or are 

due to blurred or overlapping definitions of classes or related attributes in a given classification scheme. Based on some approaches 

in the literature and not satisfying tools in existing software packages we propose the introduction of a new characteristic value, the 

Fuzzy Certainty Measure (FCM), that is able to model and quantify the indeterminate boundaries in reference data and classification 

results. 

 

 

 

1. INTRODUCTION 

The evaluation of thematic uncertainty after the classification of 

remotely sensed scenes is a standard task in order to determine 

the quality of the input data and the classification process as 

such. In general, respective quantitative methods compare 

reference data (“ground truth”) and the classification result from 

which error matrices and related measures like overall accuracy 

or Kappa coefficient can be derived.  

 

By doing this, one assumes discrete boundaries between regions 

of a scene for which one and only one topographical object is 

attached and which is not subject of temporal changes. 

Furthermore, the reference data are assumed to be error-free 

which is obviously not the case with most applications. Instead 

of this, we have to deal with some effects of fuzziness, i.e. 

indeterminate boundaries between neighbouring objects. These 

effects are even amplified with the use of spatial high resolution 

data like those from the new digital airborne camera systems or 

from satellite systems.  

 

Section 2 will elaborate on the just indicated problems in 

uncertainty determination from which the motivation arises to 

introduce some fuzzy uncertainty measures. Section 3 gives an 

overview of such measures from the literature, but also looks at 

the available tools within the software package eCognitionTM. 

From this survey it can be concluded that the existing 

characteristic values do not fulfil all demands with respect to 

uncertainties in reference data as well as to fuzziness in both, 

reference and classification results. Hence, our goal is to 

develop and to test a more profound methodology to determine 

the classification uncertainty. The resulting Fuzzy Certainty 

Measure (FCM) is presented in section 4. Section 5 summarizes 

these results and presents recommendations for further 

developments. 

 

 

2. PROBLEMS IN UNCERTAINTY DETERMINATION 

When accuracy is known objectively then it can be expressed as 

error, where it is not, the term uncertainty applies (Hunter & 

Goodchild, 1993). Thus, uncertainty covers a broader range of 

doubt or inconsistency and includes errors. In the following we 

concentrate on thematic uncertainty which shall be determined 

after the classification process.  

 

Respective quantitative methods generally compare reference 

data (“ground truth”) and the classification result from which 

error matrices and related measures like overall accuracy or 

Kappa coefficient are derived. Applying this procedure, some 

problems become evident which are even amplified with the use 

of spatial high resolution data like those from the new digital 

airborne camera systems (like ADS 40, DMC or UltraCam) or 

from satellite systems (like Ikonos, QuickBird or OrbView).  

 

In general, we have to handle indeterminate boundaries or 

spatial transition zones between mostly natural objects (e.g., 

between forest and meadow), which are in some cases also a 

function of time (e.g., the boundary between beach and water). 

On the other hand we have also to consider blurred or 

overlapping definitions of classes or related attributes in a given 

classification scheme. 

 

With high resolution data the absolute number of pixels 

describing spatial transition zones also increases. Due to the 

smaller ground pixel sizes the spectral variance within regions 

representing a topographical object is increased, which leads to 

mixed elements (e.g., forest consists of trees, bare soil and 

others). 

 

Furthermore it becomes more difficult to obtain a reference data 

set that is able to serve as a reasonable, “true” description of the 

reality. It is obvious that the assumption of error free reference 

data becomes even more critical with high resolution data. 



 

The higher degree of details which can be derived from those 

high resolution scenes must also lead to more complex 

classification schemes. With that, the chance of overlapping 

object and attribute descriptions increases in the same way as 

the (even visual) interpretation gets more error-prone. 

 

Finally, an adoption of the number and size of sample units has 

to take place. In particular the conventional acquisition on per 

pixel basis is not suitable anymore due to too small elements 

and neglecting the neighbourhood. 

 

In conclusion, it is obvious that due to the increasing 

importance of remotely sensed data with high spatial resolution 

on one hand, and the above described problems on the other 

hand, there is a significant necessity to develop uncertainty 

measures that consider uncertainties in reference data as well as 

indeterminate boundaries in both, reference data and 

classification results. 

 

 

3. PREVIOUS WORK 

3.1 Literature 

While for the application of conventional, statistically founded 

methods a variety of papers exist (e.g., Thomas, Hendrix & 

Congalton, 2003; Foody, 2004), approaches for the 

determination of fuzziness have been considered rather rarely.  

 

One approach for modelling transition zones is to introduce the 

so called ε–bands, as defined by Blakemore (1994; cited after 

Ehlers & Shi, 1997). Here, the different chances of a point-in-

polygon-relation are described by five qualitative measures 

(“definitively in”, etc.). Ehlers & Shi (1997) propose to use a 

probabilistic model in order to give a quantitative description 

which also allows for the combination with values of thematic 

uncertainty: Applying the so called S-band model positional 

and thematic uncertainty values are linked by using the product 

rule. Other options to treat indeterminate boundaries (e.g., least 

squares polynomial fitting, corridor techniques, etc.) are 

mentioned by Edwards & Lowell (1996). 

 

The application of fuzzy set theory for the determination of 

classification accuracy has been significantly influenced by 

Gopal & Woodcock (1994). They added certainty values on a 

linguistic scale (“absolutely safe”, etc.) to their visually 

classified elements. Those linguistic values can be combined 

using fuzzy logic theory for a better understanding of the 

resulting map. Similar approaches are reported by Wang & Hall 

(1996), Townsend (2000) or Lowell et al. (2005).  

 

Edwards & Lowell (1996) concentrate on the definition of a 

membership function which in their case describes spatial 

uncertainties. For this purpose they introduce fuzzy transition 

zones whose widths are defined for all pairs of object classes 

(“twains”). In this case the corresponding zone width values had 

been derived from the mean deviations resulting from multiple 

digitizations in aerial images. The authors also found that not 

only the thematic class memberships but also the area sizes of 

the polygons under consideration have a significant influence 

on the width of the transition zone (the smaller the area, the 

larger the fuzziness). 

 

 

3.2 Implementation under eCognitionTM 

The software package eCognitionTM (Definiens, 2006) offers 

conventional methods for the determination of classification 

accuracy by using reference data and the classification result 

(„Error matrix based on TTA mask“, or “Error matrix based on 

samples”). Besides that we also find the option for an 

evaluation of classification results based on fuzzy set methods. 

The concept of the „advanced classification evaluation based on 

fuzzy classification“ assumes that the larger the deviation of all 

membership values (for all classes, for one pixel or segment) is, 

the more uncertain the classification is. With that, uncertainties 

in the classification scheme and indirectly also measurement 

errors can be addressed, while the acquisition and processing 

methods themselves cannot be assessed, because uncertainties 

of the reference data are not considered.  

 

In this context the following characteristic values, which are 

only derived from the classification result (respectively, the 

corresponding membership values), can be taken into account 

with eCognitionTM: 

 

• „Classification stability“: For each pixel the difference be-

tween the largest and second largest membership values is 

computed and summed up for the entire class (or even the 

entire scene) – in the literature also known as ambiguity. 

•  „Best classification result“: This gives the visual represen-

tation of the corresponding largest membership value for 

each pixel. The mean value of all membership values can be 

interpreted as indicator of the total uncertainty. 

• For each pixel one can determine the standard deviation of 

the membership values which again can be summed up for 

the entire scene. 

  

 

 

4. FUZZY CERTAINTY MEASURE (FCM) 

Based on the above outlined problems and the current state of 

implementations as presented in the previous section our goal is 

to develop and to test a more profound methodology to 

determine a posteriori the classification accuracy considering 

uncertainty in reference data as well as indeterminate 

boundaries in the reference and the classification result. We will 

end up with the new, so called Fuzzy Certainty Measure (FCM).  

 

Our approach starts with the assumptions that the classification 

schemes between reference and classification are identical and 

that no discrepancies occur due to different pixel sizes or 

temporal changes. Furthermore we assume that an appropriate 

sampling procedure has been taken into account. 

 

In order to demonstrate the overall process as described above, 

we have applied our proposed method to a data set of the 

digital airborne camera system HRSC-AX which delivers image 

and elevation data in very high spatial resolution (in our case 

ground pixel size equals to 15 cm; see figure 1, first row). 

 

By considering uncertainties in the given reference data set, 

which is actually nothing else than another classification result, 

we have to state that in most cases the underlying 

measurements, attributes and decision rules are not known 

anymore. In order to model the inherent fuzziness, transition 

zones are introduced. Those are defined a posteriori using a 

buffering zone along a given boundary between two 

topographical objects. Based on the above cited investigations 



 

by Edwards & Lowell (1996) the width of this zone depends on 

the combination of objects (e.g., the transition zone between 

forest and meadow is obviously larger than those between 

building and road) as well as on the size of the object areas. We 

end up with membership values µREF(c) for each pixel (or 

region, if desired) separately for each object class c (figure 1, 

middle row, right). 

 

The same procedure applies for the classification result, 

leading to membership values µCLASS(c) (figure 1, bottom row, 

 

Figure 1.  Top row: Digital aerial photo for comparison purposes. 

Middle row: Reference data (left, with arrow indicating object class under consideration) 

and visualization of membership values µREF(c) for class c under consideration (right) 

Bottom row: Classification result (left) and visualization of membership values µCLASS (c) 

for class c under consideration (right) 

  



 

right). Presently, we use the same rules for building the 

transition zones as outlined above for the reference data. 

However, if more information is available, also a combination 

of traceable observation errors as well as different fuzzy 

measures could be applied. 

 

Now the obtained membership values for each pixel (or region) 

and for each topographical class are compared with the Fuzzy 

Certainty Measure FCM(c) per class c as follows: 

 

with:  

µREF(c):  membership value of a pixel (or region) for 

class c in reference data 

µCLASS(c): membership value of a pixel (or region) for 

class c in classification result 

n:  number of pixels (or regions) under  

 consideration 

  

 

The FCM(c) values vary between 0 and 1 – the larger the 

coincidence between reference and classification, the larger 

FCM(c) becomes. In our example we obtain the values as given 

in table 1. Figure 2 visualizes the measure for a selected class 

(KPS, refer to figure 1). 

 

 

Class ci FCM(ci)  

BAT Shrubs (Salix) 0.97 

FWR Reed (Phragmites) 0.86 

FZT Tidal River 0.97 

KPS Tidal Creek / Tideland 0.95 

WWT Willow Forest (Salix) 0.91 

 

Table 1.  Feature Certainty Measure for object classes under 

consideration (class names according to specific 

object catalogue, referring to example from figure 1, 

top row). 

 

 

Figure 2. Visualization of FCM(class=KPS): red colours 

indicate higher uncertainty (compare legend in figure 

1) 

Based on this it is also possible to compute the values FCM(cjk) 

for a confusion matrix by comparing µREF(cj) and µCLASS(ck) 

considering different classes (j≠k).  

 

Finally a total FCM can be obtained, e.g. by using the area A 

weighted average of all FCM(c): 

 

With that one obtains a characteristic value that considers the 

influence of the reference data and gives an indication of the 

quality of the classification procedure as such.  

 

However, in order to give an idea of the total uncertainty we 

recommend to specifying also the parameters  

 

• vagueness (difference of total classification membership 

from maximal value 1.0) and  

• ambiguity (difference between maximum and second largest 

membership value for a pixel or region).  

 

Finally we also favour a suitable graphical representation of the 

obtained quantities using methods of geo visualisation (e.g., 

interactive attribute brushing methods). 

 

 

 

5. SUMMARY AND FUTURE WORK 

Various basic research work (e.g., Hunter & Goodchild, 1995; 

Ehlers & Shi, 1997; Congalton & Green, 1999) has pointed out 

that it is not possible to define a generally valid or optimal 

model for determining the classification accuracy based on 

remotely sensed scenes. In fact, a variety of parameters like 

available data sources, systems or processes which shall be 

described, user demands, etc., have to be taken into account for 

every specific case. 

 

In this overall context our contribution concentrates on thematic 

uncertainty which shall be determined after the classification 

process. Here, we addressed the problems of indeterminate 

boundaries in both, reference and classification results, which 

occur between mostly natural objects or are due to blurred or 

overlapping definitions of classes or related attributes in a given 

classification scheme. These problems are even amplified with 

the use of remotely sensed data showing high spatial resolution 

as given with the new digital airborne or spaceborne systems. 

 

We propose the introduction of a new characteristic value, the 

Fuzzy Certainty Measure (FCM) which considers the influence 

of the reference data and gives an indication of the quality of 

the classification procedure as such. With that, comparisons 

between different classifications (with respect to different 

methods, time stamps etc.) can be evaluated more reliably. The 

procedure can be characterized as flexible and quite simple to 

apply. 

 

Our future work is concerned with a sensitivity analysis of the 

parameters (in particular with the width of transition zones 

based on object class combination and area sizes). Furthermore, 

empirical investigations will be performed for the combination 

of fuzzy with additional probabilistic measures. Finally, also the 

extension towards a change analysis is taken into consideration 
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by introducing thresholds for FCM values for the classifications 

of different time stamps. 
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